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The problem of representing the solutions to the equations in the theory of
multilayer anisotropic shells is considered by means of an suxiliary function
satisfying an equation of high order., When such a representation 1s shown
to be impossible, a substitute representations are sought.

We consider the system of equations in terms of displacements describ-

1nglt.:he deformed state of multilayer anisotropic shells [1]
(e il S tl oo
(5 ) o+ La(a, 50) 0+ L[, &)w= (1.4)
Lg, (-—%—%)zu + Lae (%, %)U + Lgs <¢% ’ (%)WZ z (1.2)
The operators [, , in (1.1) and (1.2) are determined by the relations
Ly (36; ) %) = Cu*a% + 2016'62%1/ + Ces”g;T
Ly <;%, }%) = Lo <6% , %) = Cyq ga;? + (€12 + Cog) 5;%/‘ + Cag *%‘f
Li(m s o) = Lo (5 » -a5) = (aCuut- haCe) 5 + (Cra -+ aCan) 55
23 (53; , %) = L (58; ) 7%7) = (k3Csz + k1C12) aiy 4 (k2Ca6 + F1C16) aa—x

C,, are elastlc-geometrilc constants characterizing the proper-

Here the
The solution of the system {1.1),(1.2) is appre-

tles of a multilayer shell.
clably simplified in several cases by the introduction of a so-called
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Equations in the theory of multilayer anisotropic shells 821

resolving function {1 and 2]. PFor {1.1) the resolving function may be intro-
duced by means of Formulas [1]

a — K‘D, w = L@; L = Ll‘.L?R - L122 (1-4)
Here ¢ 18 a two-component vector with components y and v determined
by the relations (1.5

u=d® =dP; dy = LyLyy — LizLas,  dy = Lyslg; — Lyl

It is easy to establish that a certain solution of the system (1.1) is
achieved for any sufficiently smooth function ¢ in Formulas (1.%) and (1.5).
The question to what extent the representation (1.4),(1.5) is a general
representation, turns out to be more complex. The study of a simlilar matter
in the case of single-layer isotropic shells [4] showed that this question
is not purposeless.

We shall make use of certain general properties of Equation (1.1) and will
investigate the system

Lyu + Ly = fy, Loyu + Ly = f, (1.6)

relative to which the following assumptions are made:
1) the system {1.6) is elliptical, i.e. the algebraic equation

L, M=L;(1, Ay Lga (1, N) —Lyg? (1,0) =0 (1.7)
has roots A, for which Im XA, # O .
2) the system (1.6) for the boundary conditions
u|=m(s), vlp=n(s)

has a single-valued solution for any sufficiently smooth functions 2, 7.,
m, n and the contour I bounding the shell.

All these facts may be proved for phisically possible values of ¢, g .
Nevertheless we shall postulate them here since the principal purpose of this
paper is the analysis of the possibility of the representations {(1.4),(1.5).
Certain properties of the system (1.6) which are required and which follow
from (1) and (2) are given below.

(1.71)' emma 1.1 . Let Ag, Ag, Ag =-?11 and Ay = Xa be roots of Equation

In this case
Li}()'p):’éro (521’231=1,23P=1’2y3»4)

For purposes of argument, we assume, for example, that 1,:(1, 3,) =0 .
It follows at once from (1.7) that I,,(3,) = O . But in this case either
A; 1s a multiple root of gz, (1, 1), or, in addition, 74 (1, 1,) = 0 . But
A1, being a complex number, can't be & multiple root of a second degree poly-
nomlial 1, . Consequently Zg, (1, A;) = O . Thus, 1 is the root of all
the polynomials r,,. But then, as is readily seen, the single-valued solva-
bility of {1.6) for given T , u, and v on the contour is violated. In
fact, any values of y &and v of the type

u = uo+q>(x+7~1y)+$(w + hyh v= v+ ¢ (@ + Ay} +P (2 + Ady)

{where o and ¢ are independent analytic functions and Ugs Vg Bre parti-
cular solutions of (1.6)), give the possibility of satisfying tl.g) and the
boundary conditions on I’ , But the arbitrariness, stipulated by the second



822 1.1.Vorovich

pair of roots 1i;, A = % ,remains, The Lemma is proved.

emma 1.2 . An arblitrary solution of the system (1.6) for
fa ;5 0 1s given by the following relations: ¢ )

1f A=Ay
=@ (&) Lua (1, Ar) + @ (81) Lp (1, M) -+  (B2) Laa (1, Ro) + b (Ba) Laa (1, Ky)
=9 (51) Ly (1, 7‘»1)”@(51)1111 (1; 7\'1) "“P(gs) Ly (i, ?\ez)”;l’_(gz) Ly (1, ?:_z)
Ei=az -+ My (i=1,2
ifr 7\,1 = hg = A ) (1.8)
u=EQ(&) Lua (1, 4) +E@ (&) Lno (1, %) + 9 (&) Lua (1, 4) + % &) Lna (1, 7)
2=—Ep(}) Lu(L, ) — & (®) Lus (1, ) =B @) L (1, ) =9 E) L (1, D)
E=z+Ay

An arbitrary solution of Equation
L(Dn = 0

IH t

fx

Iemma 1.3 .

is given by the relation

=0 (&) +0(&) + % &)+ % E)  Gash) (1.9)

=EOE)FOE +AE +1E)  a=n)
Lemma 1.4 . The proportionality
L13 (11 ;\"‘) — Lll (i, A“l) (i - 1’ 2’ 3‘ 4) (1‘10)

G Ay ds (1, &)

holds, where the ¢, are given by Formulas (1.5)
For proof, multiply (1.7) by [, (1.2) ., and by adding and subtracting

Lu uLesv we obtaln
0 = Lm (Lusz - le ) + LJ.I.LLZLB:& - L11L12L23 == le (L11L23 L12L13) _\L

+ Lll {LﬂLB - LIBLBB) = L12d1 + Llldz

Formula (1.10) then follows from the above.
It follows from Lemma 1.3 that ¢, and J, may vanish only simultaneously

1.5 . Let the relation
m (&) + m (&) +n(Ea) +n(Ea) = (1.11)

hold in a region 0 occupied by the plan of the shell, where m and n»n are
In this case.

n(gs) =bi +c

Lemma

analytic functions of their arguments.
m(E;) = ki —c,
where %, b and ¢ are arbltrary real constants,
Yor proof, differentiate {1.11) on the lines dy/fdx = — A, ; we have
m (A — M) + 1 (ha— M) + 7 (e — M) = 0 (112
Now differentiation (1.12) on the lines dy/dx = — %, gives
n” (ha— A1) (s — A1) + n” (As — Ay) (Re — A1) = 0. (1.13)
It follows at once from (1.13) that
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Ci Cikg®

= — n == = A B 1.14

(s —A) (ha—Ny) " z(x,.—ma,—mfr bt 4%

Here (¢ 1s a real constant, 4 and p are complex constants. Analog-
ously, we have

m Diky2
T 2(M—M) (M — L)
Substituting (1.1%) and (1.15) in (1.12), we obtain
C=D=E=A=0, B=bile, F=ki—c¢

”

+E& + F 1.15)

Lemma 1.6 . Let two functions T, (x,y) and T,(x,y) be connected
by the differentilal relation

a ] 2 d
(5 55) T =T(g;, ;) s (1.16)
where the [, are homogeneous real differential operators for which Equations

o,(1,) =0, H,(4,3) =0

have no common roots. In this case there exists a function T such that

I, = I,T, T, =II,T (1.17)
To prove this, we note that Equations (1.17) may be written in the form
P ) M9 3
n=]] (a_z — % ?,7) T =[] (a—,—Bmag) r (1.18)
k=1 m=1
where o,# 8. . We find from (1.17) that
=131 4 fs

Here [3' 1s an operator which is the inverse of 1, , and s, 1s a zero-
function for the operator 1I,. We determine the
operator T,~!in the following way. We suppose
initlally that ¥ = 1 and that o, 1s a real
number, Consider the direction dy/dx = —q, .
The couple of the straight lines for this direc-
tion divides the boundary of the region O on the
parts S, and S, (see Fig. 1). We set the bound-
ary value of T equal to zero on § . Then the
the solution of Equation

(6 8
3z — M @)P:Fl (1.19)

is completely determined over the whole region
0 , and consequently we construct the operator

( 9 i}_ )—1
az M Gy

We suppose that o, 1s a complex number and that ¥ =« 2 , In this case
the first of Equations (1.18) has the form

LA AL
Iy = (ax—a, ay) o — ay) r (1.20)
It is apparent that here we have on the right-hand side an elliptical

operator, and 1f we require that T = 0 on & , then T will be uniquely
determined from (1.20), and so we construct the operator

(G == &) & - 5)]”
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In the case of an arbitrary ¥ , the operator 1,-* 1s constructed as the
product of the corresponding inverse operators. The zero function for the
operator [, has the form

N
fa= 2 {2 (0, (42 +9) + B, @z + )] + 57 gy, (4 +9) +
k=1

+ 1 @2 D+ Qo+ y) + @ (@ +Y) (1.21)

Here p.,; 18 the multiplicity of the root r+ One attempts to find an
f» that salisfies the second of Equations (1.18

I 4+ hifa =T
It 1s easy to see that the relation
Mo (112 —Tg) =06
holds.
Actually, by virtue of the transposition of operators 1, and because of
(1.16) we have
Oy (I — Te) = Iy — Iele = 0
( Hince M /s 18 & zero-function for the operator 1, , and because of
1.2
N
I - = .
Wfs= D) (= * [y, (0 + ¥) + ¥p, (@ + )] + (1.22)
k=1
Pi-1 N, —
+z [‘ppk-l (x4 y) + ‘Ppk—l (o +)]+ ...}

It 1s now easy to see that if (1.21) is substituted into (1.22), then for
ax# Ba We obtain a recurrent relation that determines all the ¢ . Thus,
the function g, may be so chosen that (1.19) holds. This 1s evidently con-
clusive proof of Lemma 1.6 .

2., After presentation of the preliminary considerations we pass on to
immediate analysis of the possibllity of (1.4) and (1.5). We consider first
the case of x,# Ay . Let there be given a vector a(u,v) and a function
connected as in (1.1), and let ¢ be required to satisfy (1.4) and (1.5).
We have from (1.4

(1.4) ® = Lw + @, @2.1)

Here the operator 1~! is constructed as was done in the proof of Lemma
1.6, For determination of &, we use the first of relations (1.4)

¢ = Kd-w + K, (2.2)

In turn, to obtain a form (1.1), the following representation may be
obtained:

a = T-lf+a’0, f = {fp fZ}’ fl - - L13w1 f2 = - L23w (2'31
The operator I is determined so that 1t gives the solution of the system
(1.6) for the homogeneous boundary condition m = 0, n = 0 on the contour.

We get the equation for ¢, from (2.2) and (2.3) as

K®, = T-f — KL-w (2.4)
Lemma 2.1 . The relation
T (T-f — KEL-w) =0 (2.5)

holds.
Actually the components of the vector a; = TKL w are given by



Equations in the theory of multilayer anisotropic shells 825

Uy = [Ly (LypLag — LygLyy) 4 Lyp (LygLoy — LyxLey)] L7'w (2.6)
vy = [Loy (LyaLay — LygLlag) + Lo (LysLyy — LinLeg)] L7l
because of (1.4) and (1.5).
From (2.6) it is easy to obtain
up = — Lz, vy = — Ly 2.7
Further, on account of (2.3), the vector a,= TT"'y will have components
uy = — Lyqu, vy = — Logw 2.8)
Lemma 2.1 follows from (2.7) and (2.8).

Thus, the right-hand side of (2.4) is a homogenecus solution of the system
(1.6) which is given by Lemma 1.2, and consequently Equation (2.4) may be
presented in the form

(5 + 3) @o= @) Lna (4, ) + & E) Lus (1, To) +  (Ba) Lua (1, ) +
+"T’(§2)L12(1: As2) (2.9)

da (a% ’ a—i,) Qo= —@ (&) Lz (1, M) — ¢ (&2) Lua (4, M) — 9 (Ba) Lux (1, Ag) —
— P (&) L1y (1, &)

Taking account of the fact that the solution ¢, is expressed in terms of
two analytic functions @ and y by virtue of Lemma 1.3, we obtain from

(2.9) (2.10)

= Lya (1, M) @ (81) + L1a (1, A1) @ (1) + Lua(1,ha) § (B2) + Lua (1, he) ¥ (&2)
(2.11)

dy (1, )07 (&) +da (1, x1) 6" (Ex) +da (1, M) X" (Ba) + 2 (1,12) vl (Ez) =

=L (1. M) @ (&) — L (4, )@ (B2) — Laa (1, ho) ¥ (&) — Lys (1, K1) 9 E2)

Let the conditions

dy(1,A) =0 (o dy(1,A) = 0)
dy (1, 2) 50 (or dy(1,2) 5 0) (2.12)
be fulfilled.
In this case ¢, y and o, are found from (2.10). Thus, the ﬁmctién [+
satisfying (1.4) i1s determined. We now find the arbitrariness which may be

admitted for cholce of the function ¢ . Let 4 and ¢, satisfy Formulas
(1.4) simultaneously. Then, for &, = & — ¢, we obtain

Kd,, =0, Ld,, = 0 (2.13)

It follows from (2.13) that for @,; Equation (1.9) 1s valid, we take the
corresponding values of g and y to be 6, and y,, . In this case from
(2.13) we have

dy (1, M)Ops" + dy (1, M) 012" + da (1, Ao) %" + di (1, Rp) %2a” = O (2.14)
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da (1, M) 01"+ da (1, M) 610" 4 ds (1, he) Xa2” 4 da (1, 7?2) Yaa” =0 (2.15)
By virtue of Lemma 1.5 from Equation (2.14) we obtain
dy (1, A1) 0py" = ki —e, dy (1, ho) xag” = bi +¢ (2.16)
By substitution of (2,16) into (2.15) we find the relation connecting
k, b and ¢

d2 (1y ;\-l)

. d P
di(1, A) (ki —c) + 21, ) da(1, ha)

T Tt gyt +

(712(1,}:2_) Y _
31(1722)( bi+c)=20 (2.17)

We have from (2.17) and (1.10)

] Lu( ) | Lud, ) . Li(1, ha) | Lu(4, ha)
k i —
: [ Lz (1, M) Lz (1, ) ] +- b [ Lia (1, Ag) Lwa (1, —Xz)] +

Lin (4, A1) |, Lu(1, &) Lu (1, ) L (1, Ag)
¢ = —_ — =
+ [ L]2 (1, )\d) le (1, 7\,1) Lu (1, ;\,2) L]g (1, ;\.—2) J O (218)

We establish that the coefficlents of k, » and ¢ in (2.18) cannot
vanish simultaneously. If this is assumed, one notes easlly that
Lu (1, M) Lz (1, As)
Im . = Im =2
Lz (4, M) Lia (4, Lo)
It follows from this that

Ly (M) Lau(h)
Lyz(h) Lz (Ae)

For this case Lemma 1.2 gives

- Ly(l, M) . Lu(l, Ay
=0, Re L4, M) ¢ L {1, ) (2.19)

Ly
_— v

LIZ

This contradicts the condition of solvability of the system (1.6) for
arbitrary velues of m and n.

u ==

We get from (2.16) Ki—o B
01 = mT+M1§12+N1§1+ P

bi 3 (2.20
X1z=ﬁ%‘+ﬂlzgz2+-/v2§2+1)2 )

and it follows from (2.20) that &, has a structure
@12 = H3 (x, y) + Hg (3}', y) (2.21)

Here [s(x,y) 18 a homogeneous polynomial of the third degree having a
special form such that the coefficlients depend on three constants connected
by Equation (2.18). and 1, 1s an arbitrary polynomial of the second degree.
Thus, the function ¢ 1is determined to an arbitrariness of eight constants.

3, We pass to the analysis of the case where one of the relations in
{(2.12) is violated., It 1s easy to see that it is impossible for both con-
ditions (2.12) to be violated at the same time; 1.e. it is impossible to
have simultaneously
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di(1,A) =0, dy(1,0) =0, di(1,A) =0, dy(1,2) =0 (3.1)

Actually this condition would mean that the 4, (1) have two complex roots,
which is impossible since the 4, are third degree polynomials. Assume that
the first condition of (3.1) holds. We establish the structure of the oper-
ators L[,, , d; for this case. We have, by virtue of their homogeneity

LuLog— L1 = RiRC (ri= (7;’; —ua) (25— 2) e
b=(g—ng)RiC,  di=(p—asg)RCy

Here a, are real roots of the 4, and
C = Celos — Csé’, Cr = Cyg (ksCop + kC1s) — Cop (51C1s + £aCo) (3.3)
Cy = Cog (£yCrs + kiCog) — Cog (koCap + kiC1o)
If 1t 1s supposed that (1.%) and (1.5) still hold, then in the case con-

sidered one may write them in the form (3-4)
2 2 a 9
u=C, (-aTJ —o RO, v=0C, (517 — a 7,;) R®, w=CR,R,®
and from this
9 d a )
Ca(w—‘azj;)u—.—c1(33—'dla—z')”=o (3.9)
a /] a
CRgu = Cl ('éa;‘ — 0 '5;) w, C.sz = Cz (W — Oy '%) w

Thus, the relations (3.5) are necessary to satisfy (1.4) and (1.5) if the
first relation in (3.1) holds. We consider the question of their suffici-
ency. For satisfaction of the first of relations (3.5), and because of Lem-
ma 1.6, there exists a function ¢ such that

i 2 ] 2
u=C1(-@—-—d1 H)e, 'U=62 (?y‘—agﬁz—)e (3.6)
By substitution of (3.6) in (3.5) we easily obtain
w=CRH8 -+ m 3.7

Thus, with fulfillment of the first condition in (3.1), conditions (3.5)
are sufficient for the fulfillment of (1.4) and (1.5), if the constant n
in (3.7) 1s equal to zero. It follows from (3.4), (3.5) that with these
conditions the function ¢ 1s determined up to a function of the type
&,+ Ny*, where ¥ 1s an arbitrary constant and ¢, is an arbitrary zero
function of the operator »; .

We now seek a generalized form of the solution of (1.1) in the case where
the first of relations (3.1) holds. Excluding successively uy, v and p
from (1.1), we shall have

du —dw =0, Lv—dw=0, dp—du=20 (3.8)
Upon taking account of (3.2) these relations may be given in the form
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CR,ul—-Cl(%—al 5 )n1=0, CRw—C, (ai—“za%)wFO (3.9)

i} 0 a
G (-5; — oy E) v— Cy (W_ dg 3;) u; =0 (11 = Ry, v1=Rw, w1=Ruwn)

We get from the last relation by virtue of Lemma 1.6,
(3.10)
0

u, = C, (aiy—-al %)m, v =C, (_a‘?y-_az 2)®,  w=CR®+ M

Here ¢ 1s a certain function and y 1s a constant. For the derivation
of (3.10) it was assumed that a,#%as . It follows from (3.10) that

u=C (g —a )b+ 4, v=cz(7,%—a2-g%)xp+3

w=CRyp+ MY +D (3.11)

Here ¢y 1s an arbitrary function, ¥ an arbitrary constant; 4 , » and
D @&re certain zero-functions of the operator 4, connected by a determinate
relation. In order to find this we subatitute (3.11) into (1.1). We have

[ZaCs (g5 — o 5) + LuCa (55 — s o) + LisCRa %+

+ LilA + L{gB + L;sD = 0 (3.12)
Purther, 1t is easy to see that

R, {[é Li,-C,-( 5 — % ) 4 LwCRz]tp + Lugy? %} =0  (3.13)

Hence it follows from (3.12)and (3.13) that
Lud+LyB+LuD =K,  LuyA+LuB+LyD=K, (3.14)

Here the [, are zero-functions of the operator R, , determining single-

valued y and ¥ . We note from relations (3.14) that one is a consequence

of the other.
Indeed, for 4 , B , D and k, the following representation holds:
A=a@+My)+az+hy); B=bl+My)+be+ hy)
D =d(z + My) + d (z + hay), K; = ki (z + My) + ki (= + Aiy) GRLY
as a result of these, the system (3.14) may take the form
Lud, Mda” +Lu(, M) a” + Lia (1, M) b + Lia (4, A) 8" + Lis (4, A1) & -+
+Lis(, M)d=hk+k (3.16)
Ln(1, M)a” 4 La (1, X)a” + Laa (4, A1) b” ++ Laa (4, Aa) b +
A Loa(, M)d’ +Laa (1, M) @ = ko -+ &g
It follows from (3.16) that
L (1, A.]) a” + Lys (1, }\.1) b” ~{-— Lys (1, )\1) d =1
Lar (A, M)a" 4+ Laa (4, M) b" +Las (4, M) d' =k
But, by virtue of (1.7) and the first relation of (3.1), the relation

(3.17)
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kyfky = Ly1/Ly = Lya/Lgg = Ly3/Los (3.18)

must hold, so that one may, for example, take into consideration only the
first of Equations (3.14).

Finally, we have the following conclusion: with fulfillment of the first
relation in (3.1), a general representation of the solution of (1,1) is given
by Formulas (3.11), where 4, 7 and D are connected by one of the rela-
tions (3.1%). We consider now the degree of arbitrariness of ¢ , 4 , B , D
and ¥ in (3.11). We suppose that y = v = w = (0 and consequently that
Ru=Rwv=Rw=0. We obtain easily from (3.11)

P =1, + Ny (R = 0) (3.19)
Here ¥ is an arbitrary constant. It follows from the last of Equations
(3.11) that ¥ = 0, 1i.e. ¥ 38 determined .s single-valued. We have from
(3.11) 8 )
A=—2CNy —Ci (57— 57) %o (3.20)
v [ @ L]
B=-—2C2Ny-—(/2('a—y——-a2'5;)'lpo, D:—'ZCN——CRglpo

Thus, there may be added to the function ¢ in (3.11) an arbitrary aggre-
gate of terms of the form in (3.19), and correspondingly there must be added
to 4, B and D aggregates of terms of the form in (3.20).

k, We refer to the case of multiple roots A;= Ag= A . Analysis of the
possibility of the representations (1.4),(1,5) 1s here derived analogously;
we present 1t without details. Equations (2.9), determining ¢, in this
case, are written in the form

& (55 + o) @0 = Ep(8) Lua (1, )+ 57 B) Lua (L, K) + 9 (8) Lun (1, 1)+
+$(€) Lis (1, 1) (4.1)
da (g s o) @o= —EQ(®) Lus (1, ) — 5§ (®) Lun (1, T) — 9 (&) Lun (1, 1) —
— () Ly (1, })

We conclude readily from Lemma 1.3 that (4.1) determines ¢, if one of
the conditlons

. d, (1, %) =+ 0, dy (1, 4) =0 (4.2)
is fulfilled.

We note that (4.2) also guarantees the fulfiliment of (1.4). We find an
arbltrariness in the determination of ¢ .

Let u=v=w = 0. 1n (1.4),(1.5). In this case, because of Lemma 1.3,

Do = EO(E) + EO(E) + % (&) + x (B) (4.3)

and there must be fulfilled relation
di®y = 0 (i=1,2) (4.4)

which we write in the form
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B0"dy (1, M) + 07dy* (1, A) - €07 (1, R) 4+ 0'd,* (1, &) - (4.5)
F"dy (1, A) + x7dy (1, R) = 0
E07dy (1, A) + 0'do* (1, 1) - 80" (1, Ay dy (1, h) + @dy* (1, A)
4 wdy (1, %)+ "da (1, R) = 0

Here the d,* are certain functions of the X,, the determination of which
is omitted on account of its simplicity. We easily find from (4.5) that

3

. Tk - _ 3 g
D, = E‘L( 22y Fiody — SR S )
0 2 [ = I 302 ey '
i Fr2 YET -~ | z3 L -
(i S = Pl (00)

Here oq and g are arbltrary constants, 7 is a fixed constant, and
5$x,y) is an arbitray second degree polynomial. Thus, here also we have an
arbitrariness to eight constants. We now suppose that one of the conditions

di(1,2) =0 (=1 o 2 {(1.7)
is fulfilled.

Evidently in this case, for the fulfillment of the representations (1.4).
(1.5), it 1s necessary to satisfy conditlons (3.5) in which the operators
Rg= Ry= R (since Xg= A,= A). These conditions will be sufficient if the
constant m 1in (3.7) turns out to be zero.

The generalized representations of the solutions of (1.1) here also have
the form of (3.11), in which 4 , B and D satisfy (3.14). All conclusions
as to the character of the arbitrariness in (3.%) and (3.11) are likewilse
conserved,

%, By the introduction of a stress function [3], the equilibrium equa-
tions for a multilayer orthotropic shell may also be written in the follow-

ing form (*) o 2 Lqe o -
L2<5;, 53) ‘—‘Qr<;;, b§>u,w_0 (5.1)
. YRR .
L[5, _ay)er Vela, gmje =2 (5.2)

The operators are

9% 9 9 gt Do, 2
Ll = Dll Bzt + ~ (D12 _[" ‘-‘DGG) a‘(.zay-j + 22 oyt
. 170 ot 1 C]g gt | at ]
L= T LCH e + (C_é; —2 _T_) 920y Coz oy* .
i ; (5.3)
T'=Cylop—C1* 50, Vi = ki g R

Here the J,, are certain elastic-geometric characteristics. One may intro-
duce a resolving function for (5.1) by setting

w = LD, w = V,D (5.4)

#) Results in this paragraph were obtained by E.M. Koroleva.
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The possibility of (5.4) depends essentlally upon the properties of roots
of Equation

T /1 2C C ;
Ut oo — T“)xuc—jjx‘l:o, Mg = P + Vi (5.5)

We pass to the final results of the study of the possibility of (5.4).
The function ¢ in (5.4) always exists if

koh2 + k=0 (i=1,2 (5.6)
The function ¢ 18 determined to an accuracy of a polynomial of the type
@ = az? + 2bzy + cy® + II,, ka4 kec=0 (5.7

where I, is a first degree arbitrary polynomial. If (5.6) is violated even

for a single root, for example Ao then it 1s necessary and sufficient for

the existence of (5.4) that the relation

Cn 02 02 02

hord. T [3{2' — 2255, + (e’ +W?) 72,?] @ (5.8)
By this, ¢ 1s determined with accuracy up to an arbitrary solution of

Equation V,@® = (0. 1If (5.6) and (5.8) are violated, then (5.4) 1s impos-

sible. In this case one may substitute for them the relation

C a2 F; 1] . 02
T g e gy + W H W) et =uw (g (5.9)

W ==

C
Té—;‘zvrcp+9=w (M=)

Here ¢ 18 a certaln solution of Equation V,G = (., The function ¢ 1s
determined as single-valued.

6. Finally we note that the basic result of this paper consisits in the
following. The general representations (1.4), (1.5) and (5.4) are invalid
with corresponding realization of Equations

di (1, M) = 0, ky + k2 =0 (6.1)
Moreover, 1t 1s not advlisable to use these representations if Equations

(6.1) are about to be fulfilled because it would result in a large loss of
accuracy in numerical calculations.
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