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The problem of representing the solutions to the equations In the theory of 
multllfiyer anlsotropic shells Is considered by means of an auxiliary function 
aatisfylng an equation of high order. When such a representation Is shown 
to be lmposslble, a substitute representations are sought. 

1. We consider the system of equations in terms of displacements descrlb- 
lng the deformed state of multilayer anlsotroplc shells Cl] 

L31 (& &):’ + L32 ($ , &j V + L33 (A , -& = z 

The operators L,, ln (1.1) and (1.2) are determined by the relations 

Here .the C,, are elastic-geometric constants characterizing the proper- 

ties of a multilayer shell. The solution of the system (1.1),(1.2) is appre- 

ciably slmpllfled In several cases by the Introduction of a so-called 
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resolving function [l and 21. For (1.1) the resolving fun&iOn map be intro- 

duced by means of Formulas [l] 

a=KQ, w=LQ; L = L,,L,, - L,, (1.4) 

Here a Is a two-component vector with components u and v determined 

by the relations (1.3 

u = d,O, r = d&D; d, = L,,Lm - LI,L,,, d, = J&L,, - LA, 
It is easy to establish that a certain solution of the system (1.1) 2s 

achieved for any aufficd.ently smooth function CD In Formulae (1.4) and (1.5). 

The question to what extent the representation (1.4),(1.5) d.a a ganer~ 

representation, turns out to be more complex. The study of a almllar matter 

in the case of single-layer isotropic shells [4) showed that this W!atiOn 

is not purposeless. 

We shall make use of certain general properties of Equation (1.1) and will 

Investigate the system 

L,,U + L,,V = fl, L,,u + L,,V = fa (4.6) 
relative to which the following assumptions are made: 

1) the system (1.6) is elliptical, i.e. the algebraic equation 

L(l,h)=L,,(l,h)L,,(l,h)--L,,g(l,n)=o (1.7) 
has roots X, for which Im X,# 0 . 

2) the system (1.6) for the boundary conditions 

a1 = m(s), r /r = n (s) 

has a single-valued solution for any eufflciently smooth functlOnS J+*, fP, 

m, n end the contour r bounding the shell. 

All these facts may be proved for phlslcally possible valuea of C,, . 

Nevertheless we shall postulate them here since the’princlpal purpose of this 

paper Is the analysis of the poaaibllfty of the representations (3.4)*(1.5), 
Certain properties of the system (1.6) which are required and whloh follow 

from (1) and (2) are given below. 

Lemma 1.1. 
(L71 * 

Lat hl, hs, ha =%I and h4 = x, be roota of Equation 

In this case 

Lij &p) 7” 0 (i = 1,2; 1 = 1,2; p = 1, 2, 3, 4) 

For purpoaeB of argument, we assume, for example, that ~~~(1, X,) I 0 . 
It followa at once from (1.7) that ~,a (X,) - 0 . But in thla case ‘either 
XX la a multiple root of f,m (1, a), or, 111, addition, L- (1, A,) - 0 . But 
X I, being a complex number , 
nomhl Lo. 

can't be a mltlple root of a second degree poly- 
Consequently to0 (1, XX) I 0 . Thu8, Xl la the root of all 

the polynomzlala z13 . But then, as is readily seen, the aiagle-valued eolva- 
bllity of (1.6) for given r R U, and v on the contour ia violated. In 
fact, any values of u and v of the type 

u = Ug + ‘p (z + %Y) + F (x 4 %Y)t v = u0 + 9 (z + &Y) +3 (x -t- GY) 
(where cp and $ are Independent analytic Punotlona and U, 
cular aolutiona of (1.6)), give the poasibllity of satisfylag tl'I%) 

are parti- 
and the 

boundary conditions on r . 3ut the arbitrariness, stipulated by the second 
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Pair Of roots kp, x4- XarPemalils. The Lemma is proved. 

Lemma 1.2. 
fl 5s fz Ez 0 1s 

An arbitrary solution of the system (1.6) for 
given by the following relations: 

if k#hs 

Is given by the relation 

Lemma 1.4. The proportionality 

(1.10) 

holda, where the dr are given by Formula8 (1.5) 

For prooo,o~~ply (1.7) by 
&%l&?S, 

.L1,(l.hi) , and by addine: and subtracting 

0 = L,, (&1&B - C$) + L,,W& -&L&s = J&d (Ll& - LX2hJ + 

-I-L,,fhL, -&a-%3 = &a4 +Lrdz 

Formula (1.10) then follows from the above. 

It follows from Lemma 1.3 that d., and da may vanish only simultaneously. 

L e m m a 1.5 . Let the relation 

m(E1) + GI) + n 62) + G2) = 0 (1.11) 

hold in a region n occupied by the plan of the shell, where m and n are 

analgtic functions of their arguments. In this C&Se 

m(I&) = ki -c, n(&) = bi + c 

where k, b and 0 are arbitrary real COnSbUkS. 

i?or proof, d%fferent%ate (1.11) on the lines d&ax - - kl; we have 

m’(K-lLl)+n’(k--L$+n’(Xs--b)=O (1.125 

Now differentiation (1.12) on the lines dy/dx - - x1 gives 

n" @a-hi) (ha - XI) + n” (ha - AI) (X2 - X1) = 0. (1.13) 

ft follows at once from (1.13) that 
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n" = 
Ci CiEe9 

(ha- hl)(b 4) ' n =z(k-~d(k-L) 
+Als+B (1.14) 

Here C Is a real constant, A and B are complex constants. Analog- 
ously, we have 

D&a 

m= 2(h1-I.a,)(k-L) 
+f%+F $15) 

Substituting (1.14) and (1.15) ln (1.12), we obtain 

C=D=E=A=O, B = bi $ c, F=ki-c 

Lemma 1.6. Let two Punctlons Tl(x,y) and f*(x,v) be connected 
by the differential relation 

(1.16) 

where the II, are homogeneous real differential operators for which Equations 

&(k A) = 0, l-II, (1, A) = 0 

have no common roots. In this case there exists a function r such that 

r1 = n,r, ra = qr (1.17) 

To prove this, we note that Equations (1.17) may be written ln the form 

* a II( a 
l-1 = z -ak 5 r; (1.18) 

k=l m=l 

where a,# B. . We find from (1.17) that 

r = nor1 + fa 
n;l Is an operator which Is the inverse of n, , and f21 Is a zero- 

function for the operator Se. We determine the 
operator no-l In the following way. We suppose 
InltAaIlythat w -1 and that Is a real 
number. Consider the direction p&r 
The couple of the straight. lines for th;s-d%e& 
tlon dividesthe boundary of the region n on the 
parts s% and Se (see Pig. 1). We set the bound- 
ary value of r equal to zero on S1 . Then the 
the solution of Equation 

a a 
al - &- ay r = rl 

Pig. 1 1s completely determlned over the whole . _ . .._ 

(1.19) 

region 
n , and consequently we construct the operator 

( a a -1 
z --a1 gj 1 

We suppose that a, Is a complex number and that R - 2 . In this case 
the first of Equations (1.18) has the form 

It is apparent that here we have on the right-hand side an elllptlcal 
operator, and if we require that r - 0 on S , then T will be uniquely 
determined from (1.20), and so we construct the operator 

[( a a H a - a 1-l 
& -alFy ~x-al~yj ) 
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In the case of an arbitrary I 
product of the corresponding lnverie 

the operator l'lp-l Is constructed aa the 

o#erator II, has the form 
operators. The zero function for the 

N 

/a = x ixpk f ‘Ppk takx + y) + qpk tzkx + ?/)I + xpk-l [(Ppjc- 1 takx + !d + 
k=l 

+(PpkTl (clkx+?dl + . -. +%takx+y)+G (clkl:+y)1) (1.21) 

Here p +% la the multlpllclty of the root 
yp that saksflea the second of Equatlona (1.187" 

One attempts to find an 

rr,rIa-'r1+ rI1fa = r2 

It la easy to aee that the relation 

holda. 
nz( rIdI,-1r1- rz)= G 

Actually, by virtue of the tranapoaltlon of operators n, and because of 
(1.16) we have 

n, (IIJIa-lr~ - r2) = rrlrl - nara E 0 
Hence n,j, la a zero-function for the operator n, , and because of 

(1.21) N 

(1.223 

+x pk-1 [&k-l tak” + i) -f &k-l (zk” $- !f)] + . . .) 

It la now easy to aee that If (1.21) la aubatltuted Into (1.22), then for 
ak# B. we obtain a recurrent relation that determlnea all the cp . Thus, 
the f'unctlon fp may be ao chosen that (1.19) holds. This Is evidently con- 
clusive proof of ~enavl 1.6 . 

2. After presentation of the preliminary considerations we pasa on to 

innaedlate analyals of the poss1bllity of (1.4) and (1.5). We consider first 

the case of A, # A, . Let there be given a vector a(u,v) and a function w 

connected as In (l.l), and let @ be required to satisfy (1.4) and (1.5). 

We have from (1.4) 
CD = L-‘w + @)o (2.1) 

Here the operator ~-l Is constructed aa was done In the proof of Lemma 

1.6. For determination of eO we use the first of relations (1.4) 

a = Kd-lw + KcD,, (2.2) 

In turn, to obtain a form (l.l), the following representation may be 

obtained: 

a = T-If + ao, f = {fl, fd? fl = - Ll& fz = - L,,w (2.3; 

me operator T, la determined SO that It gives the ao1utlon of the system 

(1.6) for the homogeneous boundary condition m z 0, n E 0 on the contour. 

We get the equation for ea from (2.2) and (2.3) as 

Km,, = T--If 3 KL-‘w (2.4) 

L e m m a 2.1 . The relation 

T (T-‘f - KL-‘w) s 0 (2.5) 
holds. 

Actually the components of the vector al = TKL-‘W are given by 
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% = Wll &,L,, - L&2) + L,, (L,,L,, - L&3)1 L-‘w 

Vl = L L-L - L&22) + L,, (L1Jz1 - -&IL,,)1 L-b 
because of (1.4) and (1.5). 

(2.6) 

From (2.6) It is easy to obtain 

u1= - L,,w, 1,; = -L.&w (2.7) 

Further, on account of (2‘s), the vector cla- TT+/ will have components 

Up = - L,,K, us = - L,,w (2.8) 

Lemma 2.1 follows from (2.7) and (2.8). 

Thus, the right-hand side of (2.4) 1s a homogeneous solution of the system 

(1.6) which Is given by Lemma 1.2, and consequently Equation (2.4) may be 

presented In the form 

d,(+ 
-- 

z 9 ~)~o=P(wdw1) +cP(~1)L,,(l,h,)+g(~*)L,,(l,h,)t 
-- 

A(&, J+3=- 

+s(L)L12(L x2> (2.9) 
-- 

cpG1)L49 ~l)-~(~l)L~~(l,~l)-~(~,)L,,(l, A,)- 
-- 

--11) (E2L (1, X2) 

Taking account of the fact that the solution 0, Is expressed In terms of 

two analytic functions 8 and x by virtue of Lemma 1.3, we obtain from 

(2.9) (2.10) 

4 (1, W”’ (h) i 4 (1, h,) e” (iI> + & (1, b) x”’ (Es) + 4 (1, h2) i”’ (&) = 
-- 

= La(1, L)cpEl) +-L(1mi4.1) +L2(%)9(~2)t La(l&)S(Ez) 

(2.11) 

4 (1, h) em (Ed + 4 (1, h,) e’” (id + da (1, Aa) x”’ (b) + 4 (1, %a) x”’ (-&a) = 
-- 

==-J&(1. h,)cp(~l)--L,,(1,.,)~(El)--dl(l,hz)~(fz)-LL,,(1,$)II,(~~) 

Let the conditions 

d,(lJJ#o ( or d2 (1, U # 0) 

d, (1, &) # 0 ( or d, (1, &) # 0) (2.12) 
be fulfilled. 

In this case 8, x and a0 are found from (2.10). Thus, the function @ 

SatlSfylng (1.4) Is determined. We now find the arbitrariness which may be 

admitted for choice of the function @ . Let $ and 9, satisfy Formulas 

(1.4) simultaneously. Then, for q1 = @,- as we obtain 

ADD,, = 0, La?,, = 0 (2.13) 

It follows from (2.13) that for @aa Equation (1.9) Is valid, we take the 

corresponding values of 6 and x to be Qro and xla . In this case from 
(2.13) we have 

4 (I, b)b" + d,(1,%)%" + &(I, &)x12"'+ dl (1,~2)&’ E 0 (2.14) 
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&(I, hl)81,“‘+dz(l,h1)8~~“‘+&(1, h~)X12”‘_C-d, (1, h,)$ = O(2.15) 

By virtue of Lemma 1.5 from Equation (2.14) we obtain 

d, (1) h,) O,,“’ = ki - c, dI (1, X2) x12”’ = bi + c (2.16) 
By substitution of (2.16) into (2.15) we find the relation connecting 

k, b and c 

+!&;(-bi+c)=O 

We have from (2.17) and (1.10) 

(2.17) 

We establlshtlxxt the coefflclents of k, b and c In (2.18) cannot 

vanish simultaneously. If this Is assumed, one notes easily that 

Jm Lll (I, 11) 

L2(L hl) 

r= Im L&UP in) -=, 
Ll2 (1, b) 

() Re 41 (1, Al) 
429, hl) 

= Be Ll (1, h2) 
____- (2.19) 
LlZ(l, h2) 

It follows Prom this that 

Ll(h1) Lii (ha) -----_=---- 
42 &) Jka (h2) 

For this case Lemma 1.2 gives 
41 u=-----_ 
Ll2 

This contradicts the condition of solvability of the system (1.6) for 

arbitrary values of m and n. 

(2.20) 

We get from (2.16) 
ki -c 

fb = dl(l, hl) 6 bf- + M&l2 + N,E, + P, 

bi+c 529 + M2Ez + N2E2 + P, 
'12 = dl(1, h2) 6 

and It follous from (2.20) that OS has a structure 

@I2 = b(G Y) + H2(G Y> (2.24) 

Here &(x,v) Is a homogeneous polynomial of the third degree having a 
speolal form such that the coefficients depend on three constants connected 

by Equation (2.18). and n, Is an arbitrary polynomial of the second degree. 
Thus, the f'umctlon @ is determined to an arbltrarlness of eight constants. 

3. We pass to the analysis of the case where one of the relations in 

(2.X) is violated. It is easy to see that it is Impossible for both con- 

dltlona (2.12) to be violated at the same time; I.e. It Is Impossible to 

have slnkultaneously 
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4 (I, Q = 0, 4, (1, Al) = 0, d, (1, AJ = 0, cz2 (1, A%) = 0 (3.1) 

Actually this Condition would mean that the d,(A) have tW0 a@eX rOOt8r 

whlah IS lmposalble elnae the d, are third degree poLY2wJmlals. Assume that 

the first condition of (3.1) hblda. We establish the structure of the oper- 

ators Lo, , di for this case. We have, by virtue of their homogeneity 

J%lLZ ---I,= = ww 
(1 

a a a 
Ri= ay-aiz 11 

a 
a~- “iz 1) (3.2) 

d %&)R,C,, l= ay ( 
d a -- 

2= ay ( a23w2 

Here ai are real roots of the d, and 

c = C,,C,, - c2fi2, C, = C2, (kF22 + kc,,) - C22 W,, + W,) (3.3) 

C2 = (72s W,, + k2C2a) - G, (k2C22 + W,,) 

If It la eupposed that (1.4) and (1.5) still hold, then ln the case con- 

sidered one may write them ln the form (3.9 

and from thle 

c2(&- 

CR2u= C&&&w, CR,v= C&+x2+ 

Thue, the relationa (3.5) are neceaeary to 8atlEfg (1.4) and (1.5) If the 

first relation ln (3.1) holds. We consider the question of their aufflcl- 

ency. For aatlafactlon of the first of relations (3.5), and beoauae of Lem- 

ma 1.6, there exists a function e auoh that 

u=cl($-~l&)e, v=c ( a-u2g 8 
2 ay 1 (3.6) 

By substitution of (3.6) ln (3.5) we eaellg obtain 

w = CR20 + m (3.7) 

Thus, with fulfillment of the flret condition ln (3.1), aondltlons (3.5) 

are aufflolent for the fulfillment of (1.4) and (1.5), If the oonatant m 

ln (3.7) 1s equal to eero. It follows from (3.4), (3.5) that with these 

condition8 the fun&ion 0 le determined up to a function of the type 

eo+ NV', where n Is an arbitrary constant and a0 Is an arbitrary zero 

fun&Ion of the operator R, . 

We now seek a generalized form of the aolutlon of (1.1) In the case where 

the first of relation8 (3.1) holds. Excluding suoceaelvely u, u and 10 

from (l.l), we shall have 

du - d,w = 0, Lv - d.p = 0, d,v - d,u = 0 (3.8) 

Upon taking account of (3.2) these relations may be given ln the fomn 
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CROCI--G(&u&)w~=o, CR,v,-C&+$+,=O (3.9) 

(Ul = RIU, v.~=Rp, w=RmJ 

we get from the last relation by vlrtue of LWBS 1.6, 

(3.10) 

q=c a-_a a CD, 
2 aY ( 2 ax ) 

WI = CR,@ f M 

Here @ 1s a oertain funotion and .4 18 a constant. For the derivation 

of (3.10) lt wae assumed that a,#a, . It follows from (3.10) that 

~=q&u1&.)~+A, v=c a- 
2 aY i %2;)%+B 

w=CR,$+M~+D (3.11) 
Here t I8 fm arbitrary funotlon, N an arbitrary constant; A , B and 

D are certain zero-tunotione OS the operator R 1 connected by a determinate 
relation. In order to find thle we substitute (3.11) into (1.1). We have 

[LIG($ --&I &,)+ ~raC2(-+2 &.)+ &CR,]9 + 

+&,A + Lt,B + LisD = 0 (3.12) 
Further, It ie easy to see that 

&{[i Wj(-&-&,) + L&R,]q + Lay2+]=0 (3.13) 
1=1 

Hence it followa from (3.12)and (3.13) that 

LuA +LaB + J&D = KI, L1,A + L22B + L,,D = K2 (3.14) 

Here the K, are zero-function8 of the operator Al, determining single- 

valued * and PI . We note from relations (3.14) that one la a consequence 

of the other. 

Indeed, for A , B , D and Xi the fol.lowlng representation holds: 

A = a (x + hly) + a (x + hry); B=b(s+;Ily)+-@+h;y) 

D=cz(x+h1y)+ 7(x+1L*y), Ki=ki(x+&Y)$- &(X+&Y) (3.W 

as a result of these, the system (3.14) may take the form 

LU 0, h3 a” + &I(& XI) ii” + LIZ (1, Al) b” + La (1, XI) b- + 4s (1, AI) d’ + 

+ Lls(i, il) I? = kl +%I (3.16) 

hKh)a”+Lg~(i, Xl)a”+Las(1.I1)b”+Laa(1,~,)g”+ 

+ I&(1, hl)d’+h(i,%)~=k,+&, 
It follows from (3.16) that 

Ln(1, ?~,)a" + &a(& hl)b" -j- ks(i, hl)d'= kr' 

Lal(i, k)a"+ Lm(1, hl)b”+Lza(l, hl)d’=kz (3.17) 

But, by virtue of (1.7) and the first relation of (3.11, the relation 
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h/k2 = h/L21 = L12/L22 = LulL2s (3.18) 

must hold, so that one may, for example, take into consideration only the 
first of Equations (3.14). 

Finally, we have the following conclusion: with fulfillment of the first 

relation In (3.1), a general representation of the solution of (1.1) Is given 

by Formulas (3.11), where A, B and D are connected by one of the rela- 

tions (3.14). We consider now the degree of arbitrariness of 9 , A , B , D 

and W In (3.11). We suppose that u - v G WE 0 and consequently that 

R,u z R,v 3 R,w SF 0. We obtain easily from (3.11) 

9 =% +NY' (Rlllo = 0) (3.19) 

Here N Is an arbitrary constant. It follows from the last of Equations 

(3.11) that J/ = 0 , I.e. M Is determined & single-valued. We have from 

(3.11) 
A =-2C1Ny -Cl(+u1~)% (3.20) 

B=-2CzNy-CC,(~-a,~)Wo, D=-2CN-CR&o 

Thus, there may be added to the function \) In (3.11) an arbitrary aggre- 

gate of terms of the form in (3.19), and correspondingly there must be added 

to A, B and D aggregates of terms of the form In (3.20). 

4. We refer to the case of multiple roots X,=X,-A. Analysis of the 

possibility of the representations (1.4),(1,5) Is here derived analogously; 

we present It without details. Equations (2.9), determlnlng 9, In this 

case, are written In the form 

We conclude readily from Lemms 1.3 that (4.1) determines 0, If one of 

the conditions 

Is fulfilled. 
4 (1, V # 0 (4.2) 

We note that (4.2) also guarantees the fulfillment of (1.4). We find an 

arbitrariness In the determlnatlon of Cp . 

Let uz v=w s 0. In (1.4),(1.5). In this case, because of Lemma 1.3, 
-- 

QJ = @G> + Nij + x(E) + x(E) 
and there must be fulfilled relation 

Ci$@o= 0 (i=1, 2) 

which we write In the form 

(4.3) 

(4.4) 
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@md, (1, h) + 8”cl1* (1, h) -+ gP’(1, X) +@%z,* (1, I,) + (4.5) 

+ fdl(1, h) + Cd, (1) X) = 0 

@“‘d, (1, Iv) + 8”dg* (1, A) _t @“’ (1, h) d2 (j , x) + pdz* (1, A) + 

+ fd, (1, 3”) + y,nldp (1, %) = 0 

Here the d,* are certain functions of the X,, the determination of which 

is omitted on account of Its slmpllclty. We easily find from (4.5) that 

Here a and B are arbitrary constants, 1 Is a fixed constant, and 

P$(E,v) 1s an arbltray second degree polynomial. Thus, here also we have an 

arbitrariness to eight constants. We now suppose that one of the conditions 

di(1, lb) = 0 (;_;I 01 2) ! <.7j 

Is fulfilled. 

Evidently In this case, for the fulfillment of the representations (1.4). 

(1.5), It Is necessary to satisfy conditions (3.5) in which the operators 

Ra= R,= R (since As= x,= A). These conditions will be sufficient if the 

constant m In (3.7) turns out to be zero. 

The generalized representations of the solutions of (1.1) here also have 

the form of (3.11), In which 4 , B and D satisfy (3.14). All conclusions 

as to the character of the arbitrariness In (3.4) and (3.11) are likewise 

conserved, 

5. &- the lntroductlon of a stress function [31, the equilibrium equa- 
tions for a multllayer orthotropic shell may also be written In the follow- 

(5.1) 

(5.2) 

The operators are 

L1 = ~91, Y& + 2 (D12 + 2~9s~) j&1 + l&e $ 

L3=~-iCll~+j~-2~)~+C%a~1 
(5.3) 

T = CllC22 - CIs2 # 0, C,.=k,-&+k17$ 

Here the D,, are certain elastic-geometric characteristics. One may intro- 

duce a resolving function for (5.1) by setting 

w = L,@, u = O,@ (5.4) 

*I Results ln this paragraph were obtained by E.M. Koroleva. 
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The posslblllty of (5.4) depends essentially upon the properties of roots 

of Equation 

1+$(&-~)P+$=o, hl; = pk + iv/, (5.5) 

We pass to the final results of the study of the possibility of (5.4). 

The function Q In (5.4) always exists If 

k,hr2 + k, # 0 (i = 1,~) (5.6) 
The function Q Is determined to an accuracy of a polynomial of the type 

CD = a52 + 2bry + cy2 + I-I,, k,a + k,c = 0 (5.7) 
where nI Is a first degree arbitrary polynomial. If (5.6) Is violated even 

for a single root, for example Xlr then It Is necessary and sufficient for 

the existence of (5.4) that the relation 

hold. 

C 
w = -& &a [ 

aa ----t-b& + h2 + v2) &] cp (5.8) 

By this, @ Is determined with accuracy up to an arbitrary solution of 

Equation v, CD = 0. If (5.6) and (5.8) are violated, then (5.4) Is lmpos- 

slble. In this case one may substitute for them the relation 

(hl# hz) (5.9) 

g$vp(p+e=w (h1= ha) 

Here e Is a certain solution of Equation Q&3 = O., The function e Is 

determined as single-valued. 

6. Finally we note that the basic result of this paper conslslts In the 

following. The general representations (1.4), (1.5) and (5.4) are Invalid 

with corresponding realization of Equations 

di (1, hk) = 0, k, + k&k2 = 0 (6.4) 
Moreover, It Is not advisable to use these representations If Equations 

(6.1) are about to be fulfilled because It would result In a large loss of 

accuracy In numerical calculations. 
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